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Contamination HM is an important issue associated with the environment, and it requires suitable steps for the reduction of HMs
in water at an acceptable ratio. With modern technologies, this could be possible by enabling the carbon adsorbents to adsorb the
pollutions via deep learning strategies. In this paper, we develop a model on detection and prediction of presence of HMs from
drinking water by analysing the adsorbents from residuals using deep learning. The study uses dense neural networks or
DenseNets to analyse the microscopic images of the residual adsorbents. The study initially preprocesses and extracts features
using standardised procedure. The DenseNets are used finally for detection purpose, and it is trained and tested with standard
set of microscopic images. The experimental results are conducted to test the efficacy of the deep learning model on detecting
the HM composition. The results of simulation show that the proposed deep learning model achieves 95% higher rate of
detecting the HM composition from the adsorption residuals than other methods.

1. Introduction

Humans and animals both need access to clean water. To
live a long and healthy life, it is essential to have access
to safe drinking water [1]. The problem is that while the
global need for water continues to rise each year, pollution
from numerous sources has damaged potential water
sources [2]. The climate change effects including tempera-

ture increasing and water cycle changes exacerbate the
flooding, droughts, and contamination of chemicals in
water [3].

For example, if a polluted water supply is used for
irrigation, people may be exposed to diseases or poison-
ous chemicals from the water, or they may eat aquatic
species that have been poisoned by the toxins. However,
for the vast majority of people in the world poorest
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countries, polluted water is the greatest threat to their
health [4].

People in underdeveloped nations are particularly vul-
nerable to the negative effects of rising pollution because
they it lacksthe water resources to be treated efficiently or
it is considered as its ability on accessing the water systemsto
be safer one [5]. People mostly lacks fundamental sanita-
tions, including drinking water, and people tends to spend
more on getting water from various sources, including bore-
holes, piped water, springs, protected wells, packaged water,
or rainfall, according to the World Health Organization [6].

Water-related diseases are more likely to occur in impo-
verished countries if people are unable to consistently obtain
an improved drinking water supply. According to the WHO,
more than millions die from water borne diseases that
include dengue and diarrhoea [7]. The greatest hazard to
human health in developing countries is the pollution of
drinking water by microbiological pathogens. There is also
a rising concern about the increasing of Heavy Metals
(HMs) in the drinking water supply [8].

HM contamination has increased as a result of an
increase in industrial and urban activity in developing coun-
tries in recent years. Many businesses, including coal-fired
power stations and mines, release contaminated wastewater,
which is combined with solid waste disposal and waste recy-
cling to create a significant amount of pollution, which is
further exacerbated by vehicle emissions and other urban
activities [9].

More than 80% of municipal and industrial waste is dis-
charged into natural ecosystem without proper treatments.
The urban polluted storm water, rainwater transfer, and
agricultural runoff transformation into a drinking source is
considered as an additional contamination [10].

In light of their well-documented negative impacts on
human health, carcinogenicity, and toxicity, HMs are a
major source of worry. HM contamination problem occurs
as a result of the ineffectiveness of common water treatment
methods in developing countries [11].

The presence of HMs in water and the health risks asso-
ciated with HM contamination have been the subject of
numerous review studies when examining their influence
on the developing world [12].

A deep learning model is used to analyse adsorbents
from residuals to detect and predict the presence of HMs
in drinking water. The remaining adsorbed materials are
studied using dense neural networks (DenseNets), in this
study. After training and testing on a standard collection of
microscopic images with the DenseNets, they are used for
final detection.

2. Background

The toxicity of HM in water in emerging countries, such as
China, India, Bangladesh, Ethiopia, Pakistan, and other
developing countries, has been extensively studied by many
scholars [13–19]. To make matters worse, because of the
well-documented harm that HMs inflict on human health,
a great deal of study has been done on ways to remove

HMs from water, such as waste water from municipalities
or industry.

Activated carbon adsorption, carbon nanotechnology,
and a variety of modified adsorbents are among the treat-
ment methods and technologies that have recently received
attention for their HMs removal, and they are investigated
as a major sources of research in major developed countries.
However, in the context of the developing world, these tech-
nologies are not viable or cost-effective. Water treatment
systems in most countries tends to be done using purchase,
locally built, and cost as little as possible to run [15].

The lack of conventional water treatment procedures for
removing HMs is another problem for developing countries.
Adsorbents with low cost have been extensively studied to
check if the HMs are removed from water [16].

According to research, HMs can be effectively removed
from these materials. It appears that agricultural waste and
by-products, rather than mineral deposits and natural soil,
are the most successful at removing HMs from soil samples
in this study. In spite of the fact that chemically modifying
the adsorbents boosted the total adsorption capabilities of
the materials studied, these technologies are often unavail-
able to communities [17].

Material properties and quality of water both have an
important role in how well these materials remove HMs.
The stability and speciation of HMs, as well as the adsorptive
properties of the adsorbent, might be affected by these con-
ditions. In addition, ion exchange and the effect of electro-
static forces are the most commonly stated mechanisms for
the removal of HMs. When it comes to the efficiency of these
systems, water quality plays a huge role [18, 19].

The major contributions of the work involve the
following:

(i) The HPI (Heavy Metal Potential Index) protocols
were six quality procedures for groundwater con-
tamination developed using the analysed results of
the HM concentrations; these included the HEI,
CI, EHC, and HMI, respectively

(ii) Three groundwater samples had BDL As and Mn
concentrations are eliminated from the calculation
of several indices

(iii) The experimental results are conducted to test the
efficacy of the deep learning model on detecting
the HM composition. The results of simulation
show that the proposed deep learning model
achieves higher rate of detecting the HM composi-
tion from the adsorption residuals than other
methods

3. Proposed Method

In the study region, samples were taken from 300 different
locations by hand pumping and digging wells. Polyethyl-
ene containers were used to collect and filter groundwater
samples. In order to prevent metal precipitation and bio-
logical growth, the pH from samples is maintained care-
fully with proper acidification. The atomic absorption
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spectrophotometer was used to aspirate water samples at
appropriate wavelengths, which were then analysed. As a
reductant, potassium iodide and sodium borohydride
solution are utilised in the atomic absorption spectropho-
tometer to evaluate groundwater samples. The proposed
method is shown in Figure 1.

For each metal analysis, we used the averages of three
independent sets of data. Calibration of the instrument with
standards and blanks was performed after every 10 samples
to achieve an error of less than 3% in the analytical preces-
sion. The latitude/longitude of sampling station using a
GPS is recorded during sample collection.

The HPI protocols were the six quality procedures for
groundwater contamination developed using the analysed
results of the HM concentrations; these included the HEI,
CI, EHC, and HMI, respectively. Three groundwater sam-
ples had BDL, and As and Mn concentrations are eliminated
from the calculation of several indices.

3.1. HPI. Individual HM impacts on the overall water quality
state are assessed by HPI. With this method, it is calculated
by assigning an appropriate rating to the human factors
selected, which are carried out based on quality or by taking
into account the maximum acceptable and maximum
desired limits for each HM.

3.2. HEI. Heavily contaminated water (HMs) can be assessed
using HEI, which is identical to HPI. For the purposes of this
approach, the maximum allowable concentration of any
given HMI was divided by the measured HMI concentra-
tion. Because HEI does not have a critical value, workers
must use their own discretion when evaluating pollution
levels using this metric. It was so determined that a multiple
of mean approach was used to classify the groundwater in
the study area into three pollution categories.

3.3. CI. It sums together the combined effects of many qual-
ity characteristics that are regarded as detrimental to domes-
tic water in order to provide the degree of contamination.
Contamination factors from individual HMs that exceeded
the maximum permitted value were used to calculate the
current CI values.

3.4. EHCI. Based on information entropy, the EHCI mea-
sures water quality. The EHCI drinking water consideration
is calculated by first computing the Shannon entropy infor-
mation weights (wi) for HMs and then using the weights
and subindices (Qi) to get the EHCI drinking water
weights (qi). The critical value of qi is 200.

3.5. HMI. An area water quality can be represented using the
HMIi.e.principal component analysis (PCA). Using PCA,
factor loadings are calculated by taking into account factors
with Eigenvalues greater than 1. To calculate HMI, PCA-
based relative eigenvalues and factor loadings are multiplied,
and the result is the matching HM weight (pi).

3.6. PMI. There are no boundaries to the number of vari-
ables that can be used in PMI multivariate metal indexing
approach. The NSPMI for all derived factors, including

those with both positive and negative values, is added. As a
result, a standardised PMI score is computed to simplify
the interpretation of the data.

3.7. Classification of Dense Networks

3.7.1. DenseNet Classification. As such, DenseNet can be
seen as an extension of this. Let take a short trip to mathe-
matics to figure out how we got here. Taylor expansion of
functions is a useful reminder. x = 0x = 0x = 0 is the point
at which x equals 0x equals 0. There are many ways to
express this.

f xð Þ = f 0ð Þ + f ′ 0ð Þx + f ″ 0ð Þ
2! x2 + f ‴ 0ð Þ

3! x3+⋯::: ð1Þ

The decomposition of a function into higher and higher-
order terms is critical. ResNet, on the other hand,
decomposes functions into subfunctions.

f xð Þ = x + g xð Þ: ð2Þ

ResNet breaks down the f ðxÞ into a basic linear compo-
nent and a more sophisticated nonlinear term. DenseNet
was one of the options. Mapped values are obtained by pro-
gressively more sophisticated functions being applied to an
increasing number of variables.

x⟶ x, f1 xð Þ, f2 x, f1 xð Þ½ �ð Þ, f3 x, f1 xð Þ, f2 x, f1 xð Þ½ �ð Þ½ �ð Þ,⋯½ �:
ð3Þ

Quality Indices 

HPI

HEI

CI

EHCI

HMI

MPI

Figure 1: Classes of quality procedures in evaluation.
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There are three ways to look at something. As a result,
the number of features in MLP is reduced again. In terms
of implementation, the study simply concatenates
terms rather than adds them. DenseNet gets its name from
how dense the graph of interdependencies between variables
grows. In a chain like this, the final layer is tightly linked to
every layer before it. Dense blocks and transition layers are
the primary constituents of a DenseNet. These are the two
components that regulate the number of channels and the
concatenation of the inputs and outputs.

3.7.2. Dense Blocks. Using the batch normalisation, activa-
tion, and convolution structure of ResNet, DenseNet is able
to perform better than ResNet. Each convolution block in a
dense block uses the same number of output channels, form-
ing a single convolutional block. The input and output of
each convolution block are concatenated on the channel
dimension in the study forward propagation, however.

3.7.3. Transition Layers. Adding too many dense blocks will
result in a model with an excessive number of channels. The
model complexity is managed by the use of a transition
layer. Convolutional layer 1 × 11 × 11 × 1 and average pool-
ing layer stride 2 lower the number of channels and the
width or height of the pooling layer. The output of the dense
block in the preceding example can benefit from the addi-
tion of a transition layer with ten channels. There are now
only 10 output channels, and the overall size is smaller
as well.

3.7.4. DenseNet Model. After that, a DenseNet model will
be built. A convolutional and pooling layer are used in
DenseNet first stages, just like in ResNet. DenseNet then
employs four dense blocks in a manner similar to ResNet
four residual block modules. A dense block convolutional
layer count can be customised, similar to ResNet. In addi-
tion, the study sets the dense block convolutional layer
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channel count at 32, resulting in an additional 128 chan-
nels for each dense block. The stride of 2 reduces the
height and width of each module in ResNet by a residual
block.

3.7.5. Training. Because of this, the input height and breadth
will be reduced from 224 × 96 to facilitate computation
because the study is employing a deeper network.

3.8. Fitness Function. A DenseNet model was developed
that uses a dataset subset for training and testing. Nine
input variables (HMs) and the resulting indices of subset
are normalised using the (0–1) scale in order to avoid
the inverse effect of the changing scale of the input vari-
ables. The constant datasets convergence is achieved
through data normalisation. The following equation was

used to normalise the data before it was preprocessed for
analysis:

r = r − rmin/rmax − rmin, ð4Þ

where,
r ∗: input data (of normalised one),
rmin: minimum input value,
rmax: maximum input value.
The training dataset allocation is another crucial compo-

nent of this study. A total of 226 datasets were used, of which
184 datasets were used to train the model. Additional
groundwater samples with As and Mn concentrations below
detection limits were detected and removed from the
training sets.
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In addition, applying L2 regularisation to the DL algo-
rithm minimises the model complexity by computing the
sum of weighted parameters and it is given as follows:

L0 =
1
n
〠
n

i=1
O − Pð Þ2, ð5Þ

where,
L0 : loss function,
n: training datasets,
O: observed output,
P: predicted output.

4. Results and Discussions

Different indices were used to evaluate groundwater HM
pollution, as well as the performance and the accuracy of
computed indices. Groundwater HM contamination indices
for a groundwater are analysed in this section to determine
the model correctness.

The evolution of different indices is assessed by the vali-
dation metrics that includes accuracy, precision, recall, F-
measure, and error.

Figure 2 shows the accuracy of validating the prediction
of how well the pollution indices find the pollution level in
ground water. The results are assessed in terms of HEI,
HPI, EHCI, CI, PMI, and HMI. The results of the simulation
show that DenseNets achieves higher rate of accuracy using
these quality protocols than other AI models.

Figure 3 shows the precision of validating the prediction
of how well the pollution indices find the pollution level in
ground water. The results are assessed in terms of HEI,
HPI, EHCI, CI, PMI, and HMI. The results of the simulation
show that DenseNets achieves higher rate of precision using
these quality protocols than other AI models.

Figure 4 shows the recall of validating the prediction of
how well the pollution indices finds the pollution level in
ground water. The results are assessed in terms of HEI,
HPI, EHCI, CI, PMI, and HMI. The results of the simulation
show that DenseNets achieves higher rate of recall using
these quality protocols than other AI models.

Figure 5 shows the F-measure of validating the predic-
tion of how well the pollution indices find the pollution level
in ground water. The results are assessed in terms of HEI,
HPI, EHCI, CI, PMI, and HMI. The results of the simulation
show that DenseNets achieves higher rate of F-measure
using these quality protocols than other AI models.

Figure 6 shows the percentage error of validating the
prediction of how well the pollution indices find the pollu-
tion level in ground water. The results are assessed in terms
of HEI, HPI, EHCI, CI, PMI, and HMI. The results of the
simulation show that DenseNets achieves reduced error rate
using these quality protocols than other AI models.

5. Conclusions

In this paper, prediction of presence of HMs using various
quality protocols on the drinking water is analysed using
the adsorbents from residuals using DenseNet. DenseNet
analyzes the microscopic images of the residual adsorbents.
The study initially preprocesses and extracts features using
standardised procedure. The DenseNets are used finally for
detection purpose, and it is trained and tested with standard
set of microscopic images.

The experimental results are conducted to test the
efficacy of the deep learning model on detecting the HM
composition. The results of simulation show that the
proposed deep learning model achieves higher rate of detect-
ing the HM composition from the adsorption residuals than
other methods. In the future, the proposed modelling can
improvised with the several utilization of machine learning
or deep learning methods.
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Data Availability
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